Source code for ltsm.utils.metrics

import numpy as np


[docs] def RSE(pred, true): return np.sqrt(np.sum((true - pred) ** 2)) / np.sqrt(np.sum((true - true.mean()) ** 2))
[docs] def CORR(pred, true): u = ((true - true.mean(0)) * (pred - pred.mean(0))).sum(0) d = np.sqrt(((true - true.mean(0)) ** 2 * (pred - pred.mean(0)) ** 2).sum(0)) return (u / d).mean(-1)
[docs] def MAE(pred, true): return np.mean(np.abs(pred - true))
[docs] def MSE(pred, true): return np.mean((pred - true) ** 2)
[docs] def RMSE(pred, true): return np.sqrt(MSE(pred, true))
[docs] def MAPE(pred, true): return np.mean(np.abs(100 * (pred - true) / (true +1e-8)))
[docs] def MSPE(pred, true): return np.mean(np.square((pred - true) / (true + 1e-8)))
[docs] def SMAPE(pred, true): return np.mean(200 * np.abs(pred - true) / (np.abs(pred) + np.abs(true) + 1e-8))
# return np.mean(200 * np.abs(pred - true) / (pred + true + 1e-8))
[docs] def ND(pred, true): return np.mean(np.abs(true - pred)) / np.mean(np.abs(true))
[docs] def metric(pred, true): mae = MAE(pred, true) mse = MSE(pred, true) rmse = RMSE(pred, true) mape = MAPE(pred, true) mspe = MSPE(pred, true) smape = SMAPE(pred, true) nd = ND(pred, true) return mae, mse, rmse, mape, mspe, smape, nd